徐天宇,张立翔.木质部管胞纹孔结构对植物管胞内径及电阻率的影响[J].湖南农业大学学报:自然科学版,2019,45(4):.
木质部管胞纹孔结构对植物管胞内径及电阻率的影响
  
DOI:
中文关键词:  植物木质部  单管胞模型  纹孔结构  电阻率  管胞长宽比
英文关键词:plant xylem  single tracheid model  torus-margo bordered pit structure  resistivity  aspect ratio of tracheal
基金项目:国家自然科学基金项目(51279071);教育部高等学校博士点基金项目(2013531413002)
作者单位
徐天宇,张立翔 昆明理工大学建筑工程学院云南 昆明 650500 
摘要点击次数: 175
全文下载次数: 75
中文摘要:
      运用数学模型和流体建模相结合的方法,建立植物单管胞阻力计算的数学模型,研究纹孔结构与植物管胞内径及电阻率的关系;采用低雷诺数k–ε 模型对不同结构的塞–缘具缘纹孔水分流动进行数值模拟。结果显示纹孔深度、纹孔塞缘孔隙率、纹孔直径、纹孔塞直径是影响管胞电阻率的主要因素。纹孔深度6 μm的比3 μm的电阻率降低18.57%,管胞内径增加23.43%;纹孔塞缘孔隙率66.7%比16.7%的电阻率降低9.80%,管胞内径增加10.65%;纹孔直径16 μm的比10 μm的电阻率降低9.21%,管胞内径增加10.54%;纹孔塞直径4 μm的比2.5 μm的电阻率提高8.76%,管胞内径减少8.14%;纹孔结构的变化导致其管胞长宽比值出现差异性,管胞长宽比为(95∶1)~ (70∶1)。在纹孔阻力一定的情况下,纹孔阻力与管胞内流动长度阻力之间的比值随管胞内流动长度的增加而减小;当管胞内流动长度为管胞长度的2/3时,纹孔阻力与管胞内流动长度阻力之间的比值为0.997,其纹孔类型不影响纹孔阻力与管胞内流动长度阻力之间的比值。
英文摘要:
      A mathematical model of plant single-tracheid resistance calculation is established to investigate the relationship between the tracheid structure and the inner diameter and electrical resistivity of plant tracheid.The water flow in plant tracheid with different torus-margo bordered pit structure was simulated of different torus-margo bordered pit structure is carried out by using the low Reynolds number k-ε model for the torus-margo bordered pit resistance. The results show that the parameters such as pit diameter, pit depth, diameter of torus, and porosity of margo are the main factors affecting the resistivity and inner diameter of tracheid. It is found that with the increase of the pit depth, the resistivity of the pit depth of 6 μm is reduced by 18.57% compared with the pit depth of 3 μm, and the inner diameter of the tracheid increases by 23.43%. With the increase of the porosity of margo, the resistivity of the porosity of margo of 66.7% is reduced by 9.80% compared with the porosity of margo of 16.7%, and the inner diameter of the tracheid increases by 10.65%. As the pit diameter increases, the resistivity of the pit diameter of 16 μm is reduced by 9.21% compared with the pit diameter of 10 μm, and the inner diameter of the tracheid increases by 10.54%. As the diameter of torus increases, the resistivity of the diameter of torus of 4 μm is increased by 8.76% compared with the diameter of torus of 2.5 μm, and the inner diameter of the tracheid decreases by 8.14%. The change in the pit structure leads to the difference in the aspect ratio of the tracheids, and the calculated ratio is (95∶1)-(70∶1). In the case of a certain resistance of the pit, the proportion between the pit resistance and tracheid flow length resistance decreases as the tracheid flow length increases, when the flow length is two-thirds of the length of the tracheid, the proportion is 0.997, and the type of pit does not affect the ratio between the pit resistance and tracheid flow length resistance.
查看全文  查看/发表评论  下载PDF阅读器
关闭
Copyright © 2008 《湖南农业大学学报》自然科学版 地址:湖南 长沙市 芙蓉区 
邮编:410128 电话:0731-84638380 0731-84618035 0731-84617599 0731-84673730 E-mail: zkb4618035@hunau.net  京ICP备09084417
分享按钮